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We investigate the influence that classical dynamics has on interference patterns in coherence experiments.
We calculate the time-integrated probability current through an absorbing screen and the conductance through
a doubly connected ballistic cavity, both in an Aharonov-Bohm geometry with forward scattering only. We
show how interference fringes in the probability current generically disappear in the case of a chaotic system
with small openings, and how they may persist in the case of an integrable cavity. Simultaneously, the typical,
sample dependent amplitude of the flux-sensitive part g��� of the conductance survives in all cases, and
becomes universal in the case of a chaotic cavity. In the presence of dephasing by fluctuations of the electric
potential in one arm of the Aharonov-Bohm loop, we find an exponential damping of the flux-dependent part
of the conductance, g����exp�−�L/���, in term of the traversal time �L through the arm and the dephasing
time ��. This extends previous works on dephasing in ballistic systems to the case of many conducting
channels.
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I. INTRODUCTION

Ever since the inception of quantum theory, questions
have been raised related to its connection to classical physics
�1�. From a dynamical point of view, it is generally accepted
that the Liouville and Schrödinger equations deliver the
same time evolution for short enough times, t� tE. In both
chaotic and integrable dynamical systems, tE goes to infinity
in the semiclassical limit of large quantum numbers. In cha-
otic systems, however, the quantum breaktime tE
=�−1�ln �eff� does so only logarithmically slowly in the effec-
tive Planck’s constant �eff �� is the system’s Lyapunov expo-
nent� �2�. For t	 tE, the standard view is that external
sources of decoherence must be invoked in order to reestab-
lish the correspondence between quantum and classical me-
chanics �3–6�.

Arguing that the necessity of external degrees of freedom
for the quantum to classical transition remains unclear �see
for instance Ref. �7��, Casati and Prosen recently performed
a numerical double-slit experiment �8�. The set-up they con-
sidered is sketched in Fig. 1. One pierces two openings of
width W in an otherwise closed cavity. Inside the cavity, a
particle of mass m�1 is prepared in an initial wave packet
of minimal spread in momentum. The system is considered
to be semiclassical, i.e., the ratio of the linear system size
and the particle’s de Broglie wavelength is big L /

=kL /2��1. As time goes by, the particle leaks out of the
cavity with an average decay time �d�L2 / �Wv��� f much
larger than the time of flight � f �L /v across the cavity, v
being the particle’s velocity. That is, the particle bounces
many times between the cavity’s boundary before exiting.
One then records the integrated probability current I�z�
through the screen �from now on we set ��1�,

I�z� = �
0



dt Im��*�z,y ;t��y��z,y ;t��y=yo
. �1�

Two different situations were considered, where the cavity
was either integrable �an isosceles right triangle� or chaotic

�where the hypotenuse was replaced by a circular arc�. In the
integrable case, numerics showed that I�x� exhibits the ex-
pected interference fringes. Those fringes were however ab-
sent in the chaotic case where I�x� takes on its classical,
structureless shape. These results prompted Casati and
Prosen to draw two conclusions, �i� the double-slit setup pro-
vides for a “vivid and fundamental illustration of the mani-
festation of classical chaos in quantum mechanics,” and �ii�
dynamical chaos alone �i.e., without any external source of
noise, or any coupling to an external bath or environment�
can produce sufficient randomization of quantum-mechanical
phases resulting in a quantum to classical transition in the
semiclassical limit. The reasoning path leading to conclusion
�ii� is qualitatively the following. Due to the long lifetime of
the particle inside the cavity, the wave packet must hit the
cavity walls many times before exiting. Semiclassically, the
wave packet follows many classical trajectories exiting at
different times, and thus accumulating different action
phases. In the regular case, because the particle’s initial mo-
mentum is well defined, the action phases accumulated along
all those trajectories are correlated. In the chaotic case how-
ever, the initial momentum uncertainty grows exponentially

FIG. 1. �a� Double-slit setup of Ref. �8�. A cavity is pierced by
two slits. A wave packet of well resolved initial momentum is pre-
pared inside the cavity and leaks out little by little. The current
through a screen is measured and integrated over time.
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with time and the classical trajectories have a broad, continu-
ous distribution of duration. Hence they acquire a random
distribution of action phases. Based on this observation, Ca-
sati and Prosen concluded that this phase randomization pre-
vents interference fringes to occur, in agreement with their
numerical calculation. It is important to realize at this point
that at any given point and time, the phase of the wave func-
tion is uniquely defined, and can in principle be determinis-
tically obtained from the initial condition.

There is no controversy related to conclusion �i�. Conclu-
sion �ii� however, not only challenges the standard view ac-
cording to which long-time quantum-classical correspon-
dence requires coupling to external degrees of freedom, but
must be reconciled with well-established mesoscopic physics
results �9�. It is indeed well known that both transport
�10–12� and thermodynamical �13–15� properties of multiply
connected mesoscopic samples threaded by a magnetic flux
display coherent flux-periodic oscillations of a purely quantal
origin. It is doubtful that all experimentally investigated sys-
tems are integrable. From a theoretical point of view, such
oscillations have been moreover predicted for disordered,
diffusive samples with pointlike impurities which are argu-
ably as good “phase-randomizers” �in the sense given above�
as deterministic chaos. The even flux-harmonics �those hav-
ing a period in the applied flux � of �0 /2n, with n a positive
integer and �0=h /e the flux quantum� of these oscillations
even survive disorder averaging �10,14�, and in the case of
transport experiments “à la Sharvin and Sharvin,” the ampli-
tude of the Aharonov-Bohm oscillations of the conductance
are mostly insensitive to the amount of disorder �10�.
Clearly, conductance is insensitive to the “dynamical deco-
herence” scenario of conclusion �ii�. The purpose of this pa-
per is to reconcile the numerical experiment of Ref. �8� with
the established theoretical and experimental wisdom of me-
soscopic physics, as well as to investigate dephasing in bal-
listic mesoscopic systems.

We will present a comparative semiclassical calculation of
the outgoing probability current in the Aharonov-Bohm two-
slit setup of Fig. 2�a� �similar to the setup of Ref. �8�, see
Fig. 1� and of the conductance in the setup of Fig. 2�b�. In
both cases, a cavity is connected to two intermediate left �L�
and right �R� leads carrying NR,L�1 transport channels.
These intermediate leads eventually merge and the loop they
form is threaded by a magnetic flux �. In the transport setup
of Fig. 2�b�, the cavity is in addition connected to a current-
injecting lead carrying NB transport channels. In the two in-
stances, we consider ideally connected, i.e., nonreflecting
leads, and will restrict ourselves to the situation where the
number NT of outgoing channels obeys NT�NL+NR. One
can then neglect processes where particles circulate several
times around the Aharonov-Bohm loop. As but one conse-
quence, our semiclassical treatment is fully unitary, but flux-
dependent weak localization corrections are absent. Such
corrections have been considered in a different ballistic setup
in Ref. �16�. The setup of Fig. 2�b� in the diffusive regime
has been considered in Ref. �17�. A nonunitary semiclassical
treatment of the set-up of Fig. 2�b� considering backscatter-
ing due to pairs of time-reversed paths has been presented in
Ref. �18�.

Our conclusion is that, while there is nothing wrong with
most of the reasonings and the numerical results of Ref. �8�,

decoherence cannot be claimed to occur when one observ-
able does not display interference patterns, but when this is
the case for all possible observables. The conductance ex-
periment of Fig. 2�b� will be shown to exhibit sample-
dependent Aharonov-Bohm oscillations in both cases of an
integrable and a chaotic cavity. We will see how these oscil-
lations disappear as dephasing is introduced. Our results sup-
port the standard wisdom according to which the quantum to
classical crossover requires a coupling to external degrees of
freedom.

The paper is organized as follows. In Sec. II we present a
semiclassical calculation for an Aharonov-Bohm setup simi-
lar to the two-slit experiment considered in Ref. �8�. This
calculation is extended to the calculation of the conductance
in an Aharonov-Bohm transport setup in Sec. III. In Sec. IV
we introduce dephasing by means of a fluctuating electric
potential in one arm of the Aharonov-Bohm loop, and inves-
tigate the associated disappearance of flux-dependent inter-
ference fringes. In Sec. V we will summarize our findings
and discuss future directions and open questions.

II. TWO-SLIT SET-UP

We first consider the Aharonov-Bohm two-slit setup of
Fig. 2�a�, where an initial wave packet is prepared inside the

FIG. 2. �a� Double-slit setup similar to that of Ref. �8� �see Fig.
1�. A cavity is pierced by two slits which are connected via an
Aharonov-Bohm geometry to a single lead. A wave packet is pre-
pared inside the cavity and leaks out little by little. The current
through a cross section C �located at y=yo� of the outgoing lead is
measured and integrated over time. �b� Transport setup. The same
cavity as in �a� is connected to an additional current-injection lead.
The current through C is measured. Taking its ratio with the applied
voltage gives the conductance.
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cavity. The latter is connected to two outgoing leads carrying
many transverse channels. The leads eventually merge, form-
ing a loop threaded by a magnetic flux �. Once one inte-
grates over a cross section of the outgoing lead, the situation
is fully similar to Ref. �8�, with � playing the role of the
coordinate z along the screen �see Fig. 1�. We consider an
initial Gaussian wave packet �0�r1�= ��
2�−d/4 exp�ip0 · �r1

−r0�− �r1−r0�2 /2
2�, and approximate its time-evolution
semiclassically by �H=v2 /2; remember that we set m�1�

�r�exp�− iHt���0	 =� dr1

s

Ks�r,r1;t��0�r1� , �2a�

Ks
H�r,r1;t� = Cs

1/2 exp�iSs�r,r1;t� − i��s/2� . �2b�

Compared to Ref. �8�, the Heisenberg uncertainty is evenly
distributed between momentum and spatial coordinates in
our choice of an initial state. This should not matter in a
chaotic cavity, but may affect the outcome of the experiment
in a regular cavity. The semiclassical propagator �2b� is ex-
pressed as a sum over classical trajectories �labeled s� con-
necting r and r1 in the time t. For each s, the partial propa-
gator contains the action integral Ss

H�r ,r1 ; t� along s, a
Maslov index �s, and the determinant Cs of the stability
matrix. Because of the cavity openings, if r in Eqs. �2� is
inside the cavity, then the sum runs only over those classical
trajectories that have not yet escaped at time t, whereas if r
lies somewhere in a lead, it runs over the trajectories that
went exactly once through either of the openings to reach r.
Here, we are concerned with this latter case, setting r
= �x ,y=yo� at the horizontal position x on a cross section C of
the outgoing lead defined by y=yo �see Fig. 2�a��. Later on,
we will integrate over x.

The semiclassical expression for the time-integrated prob-
ability current �1� is given by

I�x,�� =
v

��
2�d/2�
0



dt� dr1� dr2 

s�t�,s��t�

�CsCs��
1/2 cos �s

�exp�i�Ss�x,yo;r1;�,t� − Ss��x,yo;r2;�,t���

�exp�i���s� − �s�/2�exp�ip0 · �r1 − r2��

�exp�− ��r1 − r0�2 + �r2 − r0�2�/2
2� , �3�

where we used �ySs=vy,s=v cos �s, with vy,s the velocity in
y-direction and thus �s the angle of incidence, as the path s
crosses C at time t.

The first step in the calculation of I�x ,�� is to linearize
Ss�x ,yo ;r1 ;� , t�Ss�x ,yo ;r0 ;� , t�−ps · �r1−r0�, with ps the
initial momentum on path s. This is justified by our choice of
a narrow initial wave packet. One is then left with Gaussian
integrals over r1,2. Enforcing a stationary phase condition,
the dominant, classical contributions to I�x ,�� are identified
as those with s=s�. Under our assumption of a final number
of transport channels NT�NL+NR roughly equal or some-
how larger than the sum of transport channels in the inter-
mediate leads forming the Aharonov-Bohm loop, single tra-

jectories do not enclose any flux. Diagonal contributions
with s=s� are thus flux independent. Writing I�x ,��= I0�x�
+ I��x�, one has

�I0�x�	 = v�4�
2�d/2�
0



dt

s�t�

Cs cos �s exp�− 
2�p0 − ps�2� .

�4�

The stationary phase leading to the diagonal approximation
s=s� is justified once one averages over an interval of energy
�E which is classically small �i.e., which does not modify the
trajectories� but quantum-mechanically large �i.e., such that
�E ·�d�1�. This is indicated by brackets in Eq. �4�. The av-
erage value �I0�x�	 is calculated under the assumption that
the cavity is ergodic, in particular that the wave function will
eventually leak out of it completely. That is, the time-
integrated current through C must be equal to 1 and one has

2v
�
�

0

W

dx�
0



dt���x,yo;t��2 = 1, �5�

where a factor 2 /� originated from averaging the incidence
angle on C in the interval �−� /2 ,� /2�. This provides the
semiclassical sum rule

v�4�
2�d/2�
0

W

dx�
0



dt

s�t�

Cs exp�− 
2�p0 − ps�2� = �/2. �6�

The classical time-integrated current through C is then ob-
tained as

�
0

W

dx�I0�x�	 = 1. �7�

In the limit of a wide outgoing lead, W�
, the probability
current is ergodically distributed over C so that the average
current per unit length is given by �I0�x�	�W−1.

After this warm-up calculation we turn our attention to
the flux-dependent part I��x�. It correspond to pairs of paths
s and s� in Eq. �3� exiting through different arms of the AB
ring, and evidently they are not included in the diagonal
approximation s=s�. Furthermore, no stationary phase ap-
proximation can be systematically enforced to identify them,
which reflects the fact that they vanish on average. That is to
say �I��x�	=0, once it is averaged over different initial con-
ditions, a sufficiently large energy interval or an ensemble of
different cavities. This is but one consequence of our choice
of forward scattering processes only at the merging point of
the intermediate leads.

To investigate the behavior of I��x� for a given cavity
and/or initial wave packet preparation, we proceed to calcu-
late �I�

2 �x�	, the square root of which gives the value of the
flux-dependent part of I�x� for a typical experimental realiza-
tion. Our approach is similar in spirit to the one followed in
Ref. �13� in the context of persistent currents. A similar
sum rule as �6� is helpful in computing �I�

2 �x�	, and with a
little extra work we will see that �I�

2 �x�	� �1
−exp�−�erg /�d��2�kL�−1���erg /�d�2�kL�−1, where �erg is the
ergodic time. In a chaotic cavity, it is generally given by few
times the time of flight across the cavity, so that�erg /�d
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�W /L. In the numerical experiment of Ref. �8�, both the
ratio of the width of the openings to the linear system size
and the inverse semiclassical parameter kL are much smaller
than 1, inducing the disappearance of the interference
fringes.

Noting that Ss�x ,yo ;r0 ;� , t�=Ss�x ,yo ;r0 ; t�±�� /�0,
where the plus and minus signs correspond to trajectories
going through the right and the left intermediate lead, respec-
tively, linearizing in r1,2−r0 and performing the resulting
Gaussian integrals over r1,2 as above, one has

I��x�I��x�� = 4v2�4�
2�d cos2�2��/�0��
0



dt1�
0



dt2 

s1,s3�L



s2,s4�R

��
i=1

4

Ci�1/2

cos �1 cos �4 exp�i�S1�x,yo;r0;t1� − S2�x,yo;r0;t1�

− S3�x�,yo;r0;t2� + S4�x�,yo;r0;t2��� exp�− 
2��p0 − p1�2 + �p0 − p2�2 + �p0 − p3�2 + �p0 − p4�2�/2� , �8�

where we shortened the notation, i.e., �i=�si
, Si=Ssi

and so forth. It is important to keep in mind that s1 and s2 exit the cavity
after a time t1, while the time of escape is t2 for the other two trajectories s3 and s4. Because trajectories exit via two different
arms of the AB loop, the only stationary phase condition that can be satisfied is to set s1=s3 and s2=s4, which then requires to
set x=x� with accuracy 
, and t1� t2, with an accuracy given by the time �*� /E necessary for the classical ballistic flow at
energy E to accumulate an action �. We substitute �dt1�dt2→�*�dt1 to get

�I��x�I��x��	  �
�x − x��4v2�*�4�
2�d cos2�2��/�0��
0



dt1 

s1�L



s2�R

�
i=1

2

�Ci cos �i exp�− 
2�p0 − p1�2�� , �9�

where �
�x−x�� enforces the condition x=x� with an accuracy O�
�. Because there is only one time integral but two summa-
tions over classical paths, one cannot use Eq. �6� directly. Assuming that the system is ergodic, which means in particular that
for times long enough, t��erg�� f, spatial averages equal time averages, one writes

�I�
2 �x�	  4v2�4�
2�d cos2�2��/�0���*�

0

�erg

dt1 

s1�L



s2�R

�
i=1

2

�Ci cos �i exp�− 
2�p0 − p1�2��

+ �
�erg



dt1 lim
T→

�*

T
�

�erg

T

dt2 

s1�L



s2�R

�
i=1

2

�Ci cos �i exp�− 
2�p0 − p1�2��� . �10�

Here, the second term inside the large parentheses corresponds to trajectories s1�t1� and s2�t2� exiting at different times. Its
contribution to the integrated current �dx�I�

2 �x�	 can be calculated using the sum rule �6� and making the assumption that the
current is homogeneously distributed on C. We find that it vanishes �limT→ �* /T. The first, pre-ergodic term is highly
nonuniversal and we cannot calculate it generically. We can however give an estimate to its amplitude using

�
0

�erg

dt1f�t1�g�t1� � �erg
−1�

0

�erg

dt1dt2f�t1�g�t2� � �erg
−1 �1 − exp�− �erg/�d��2�

0



dt1dt2f�t1�g�t2� . �11�

The first relation results from removing the requirement that
both trajectories s1 and s2 in Eq. �10� exit at the same time,
and to obtain the second one, we used the measure of pre-
ergodic trajectories in an open chaotic cavity �̃�t��erg�
=�d

−1�0
�ergdt exp�−t /�d�, where ��t�=�d

−1 exp�−t /�d� is the dis-
tribution of dwell times through a chaotic system �19�. Using
�* /�erg�kL�−1, and assuming again an homogeneous distri-
bution of I�x� on C, we finally get the typical flux-dependent
probability current as

�I�
2 �x�	1/2 � cos�2��/�0��1 − exp�− �erg/�d��� �*

�erg
�I0�x�	 .

�12�

We believe that Eq. �12� gives an upper bound for the
typical flux-dependent part of the probability current in the
case of a chaotic cavity. One sees that, compared to
�I0	 , �I�

2 	1/2 is suppressed by a prefactor �1−exp�−�erg /�d��
��kL�−1/2. In the chaotic configuration of Ref. �8�, the dwell
time is approximately several hundreds of times larger than
the ergodic time. Together with kL=180, this leads to the
suppression of the flux oscillations in a given sample by a
relative factor of at least ���erg /�d��kL�−1/2�10−3 compared
to the average current value.

While it is always risky to make generic statistical state-
ments on regular systems, it is reasonable to expect that in
this case, the pre-ergodic terms in Eq. �9� provide for most of
the contributions to �I�

2 �x�	. This is so, since for regular sys-
tems, �erg is much larger than in a chaotic system, and even
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diverges in most instances, regular systems being usually not
ergodic. Moreover, integrable systems exhibit periodicities
and quasiperiodicities and a persistence of correlations over
very large times. Starting from Eq. �8�, one may thus pair
trajectories either with �*�� /E, or even completely relaxing
the restriction �t1− t2���*. One then gets the best case sce-
nario result that

�I�
2 �x�	reg

1/2 � cos�2��/�0��I0�x�	 , �13�

i.e., the flux-dependent probability current is of the same
magnitude as its classical part I0�x�. This is also in agreement
with Ref. �8�. One should stress however that the result �13�
cannot be expected to hold generically. In particular, we be-
lieve that the choice made in Ref. �8� of an initial state with
narrowest momentum spread is necessary to get interference
fringes satisfying �13�. Presumably the choice of direction of
momentum also plays a role.

To summarize this section, we have shown why the inter-
ference fringes disappear for a two-slit experiment out of a
chaotic cavity. The main result of this section, Eq. �12�, can
be checked numerically by increasing the width W of the
slits or varying kL, or both, in the numerical experiment of
Ref. �8�. More qualitatively, we argued that in well chosen
situations, the interference fringes have a magnitude compa-
rable to the classical probability current if the cavity is regu-
lar.

III. TRANSPORT SETUP

We next focus on the transport setup shown in Fig. 2�b�.
We write the conductance as a sum of a classical and flux-
dependent part, g=g0+g���. We use the semiclassical frame-
work developed in Ref. �20�. We start from the scattering
approach which relates transport properties to the system’s
scattering matrix �21�

S = �r t�

t r�
� . �14�

For the two terminal geometry we consider, S is a 2-block by
2-block matrix, written in terms of transmission �t and t��
and reflection �r and r�� matrices. From S, the system’s con-
ductance is given by g=Tr�t†t� �g is expressed in units of
e2 /h�.

From Ref. �20�, the matrix elements tmn of the transmis-
sion matrix t are written as

tmn = −� ��

2WBWT



s

�s exp�iSs�rB,rT;E��
�cos �B

�m� cos �T
�n�M21

s �1/2 . �15�

The sum runs over all classical scattering trajectories enter-
ing the cavity with an angle ±�B

�m� at any point rB= �x ,yi� on
a cross section CB of the bottom lead �of geometric width
WB� and exiting it with an angle ±�T

�n� at any point rT
= �x� ,yo� on a cross section CT of the top lead �of geometric
width WT�. The channel indices �m ,n� specify the entrance
and exit angles as sin �B

�m�=�m̄ /kFWB and sin �T
�n�

=�n̄ /kFWT , m̄= ±m , n̄= ±n, while Ss�rB ,rT ;E� gives the
classical action accumulated along s. Finally M21

s

=�v� /dq� is an element of the monodromy matrix �the
�-direction is normal to the cross sections�, and there is a
phase factor �s=sgn�m̄�sgn�n̄�exp�i��m̄xB /WB− n̄xT /WT

−�s /2+1/4��.
All one needs to calculate the average conductance of a

chaotic cavity is the following sum rule, valid in the regime
of classical ergodicity �20�



s�xB,xT;�B

�m�,�T
�n��

��� − �s�
�M21

s �


cos �B
�m� cos �T

�n�


 �E�
�xB�xT�̃��� .

�16�

In contrast to Eq. �15�, the sum in Eq. �16� is restricted to
phase-space trajectories with a well resolved position and
momentum direction on CB and CT, up to uncertainties
�xB ,�xT
. Here, ��E�=2�A gives the volume of phase
space that can be visited by an ergodic particle of energy E in
a cavity of area A, and �̃���=��

��t�dt=exp�−� /�d� gives the
survival probability that a particle remains inside an open
chaotic system for a time longer than, or equal to �. The
meaning of the sum rule �16� is that at any time, surviving
classical trajectories have a probability to exit the cavity
given by the fraction of phase-space volume covered by the
leads to the total accessible volume of phase space.

From Eqs. �15� and �16�, together with the relation �d
=�A / �v�WB+WT��, it is straightforward to calculate the av-
erage conductance within the diagonal approximation. One
ends up with the classical conductance

�g	 = 

m,n

��

2WBWT



s

�cos �B
�m� cos �T

�n�M21
s �−1 =

NBNT

NB + NT
,

�17�

where we used the relation between lead width and channel
number N=Int�kFW /��. As was the case for the probability
current, the average conductance has no flux dependence
since diagonally paired trajectories do not enclose any flux.

Following the procedure we applied to �I2���	, it is
straightforward to calculate the squared typical value of the
flux-dependent part of the conductance �g2���	 using Eqs.
�15� and �16�, and Ss�x ,yo ;r0 ;� , t�=Ss�x ,yo ;r0 ; t�±�� /�0.
One then has

�g2���	 =
16�2�2NBNT



2

�E�
��

0



dt�̃�t��2

cos2�2��/�0�

= 4
NBNT

�NB + NT�2cos2�2��/�0� . �18�

Compared to the square of Eq. �17�, one sum over pairs of
channel indices disappeared from Eq. �18� because of the
stationary phase condition we enforced on each of the two
pairs of orbits going through the left and right intermediate
lead, respectively.

Equation �18� is the main result of this section. It shows
the universality of the typical Aharonov-Bohm response of
the conductance in our setup in the chaotic case. For NB and
NT not too different from each other, �g2���	 is independent
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on �g	. The survival of interference fringes in the transport
setup is a direct consequence of the fact that to extract the
conductance, one works in energy representation. Once one
writes the scattering matrix in time representation, the
squared typical conductance is given by an expression simi-
lar to Eq. �3�, with however two time integrals. This makes it
much easier to extract stationary phase conditions, without
going through the ergodicity tricks that were needed to go
from Eq. �8� to Eq. �12�, and explains the ease of calculation
with which �18� is derived compared to its probability cur-
rent counterpart of Eq. �12�.

As was the case in the preceding section for the probabil-
ity current, we cannot calculate �g2���	 in the integrable case
without relying on assumptions which are not necessarily
well controlled. In particular, there is, to the best of our
knowledge, no sum rule such as �16� for regular systems. As
is the case for persistent currents in ballistic systems how-
ever �22�, one expects a significantly increased magnetic re-
sponse, well above the chaotic value �18�, because in a regu-
lar system, the dwell time distribution is not exponential, but
power law ������−� �19�. In the best case scenario, one can
expect a response given by the coherent sum of N responses
�N=min�NB ,NT��, leading to a flux dependence of a similar
amplitude as the conductance itself. Here, further numerical
experiments are needed to clarify the situation.

IV. DEPHASING BY A FLUCTUATING POTENTIAL

The results �12� and �18� derived above follow from a
stationary phase condition. To satisfy the latter, one relies on
the exact pairing of trajectories, i.e., setting s=s� where ap-
plicable, and in this way, all accumulated action phases can-
cel two by two. This is no longer the case in the presence of
an external dephasing source. In this case, phase differences
inevitably occur in pairs of contracted trajectories due to the
interaction with the external source of noise at different
times along the trajectory. In this section, we finally discuss
this occurrence and how dephasing destroys the Aharonov-
Bohm interference fringes.

Following Ref. �23�, we consider that our system as a
whole, including charged gates defining the cavity and the
Aharonov-Bohm ring, is electrically neutral, as sketched in
Fig. 3. This does not prevent local charge fluctuations to
occur, which in their turn induce fluctuations of the electric
potential felt by the electrons. This is a specific example of
dephasing induced by an external source, in this case the
electric charges on the gates defining the system, which must
fluctuate to ensure that the fluctuations inside the circuit are
compensated to make the whole system electrically neutral.
These fluctuations result in dephasing, and without loss of
generality, we will assume that they affect only electrons
passing through one, say the left intermediate lead, during
the traversal time �L=LL /v through that lead.

We consider the case of weak coupling, where the trajec-
tories are unaffected by the coupling to external degrees of
freedom. Dephasing is introduced in our calculation via the
substitution

Ss�x,yo;r0;t� → Ss�x,yo;r0;t� + �
0

�L

dt�s�t� . �19�

Here �s�t� gives the additional action phase accumulated by
an electron traveling on path s and interacting with the
dephasing source at time t.

Using the central limit theorem, Eqs. �12� and �18� must
then be multiplied by

exp�− �
0

�L

dt1�
0

�L

dt2��s�t1��s�t2�	s/2� , �20�

where �¯	s denotes an average over the distribution of
phases on different classical trajectories. Further assuming an
exponential decay of the phase correlator ��s�t1��s�t2�	s

= ��s
2�0�	s exp�−�t1− t2� /�c�, one gets, in the limit �c��L, an

exponential suppression of the flux response

�g2���	 =
NBNT

�NB + NT�2cos2�2��/�0�e−�L/��, �21�

where ��
−1=2�c��s

2�0�	s. In the limit of Nyquist noise, a self-
consistent calculation of the phase correlator has been per-
formed in Ref. �23�, within the one-potential approximation,
i.e., assuming that the fluctuations of the electric potential
are spatially homogeneous inside one arm. A linear tempera-
ture dependence of the dephasing rate was obtained, which
in our case translates into

��
−1 = 2�c��s

2�0�	s = 8��L
2kBT/NL. �22�

Here, �L�1 stands for the ratio between the electrochemical
and the electrical capacitance of the left arm �23�. In the
weak coupling limit we are considering, one has �L1. Both
the exponential damping of the Aharonov-Bohm flux and the
linear temperature dependence of the dephasing rate are in
agreement with the experimental results of Ref. �24� on
Aharonov-Bohm conductance oscillations in few-channel
ballistic systems. Our results �20�–�22� extend those of Ref.
�23� to the many-channel case.

As a side remark, we note that in the other limit �c��L,
one gets a Gaussian suppression of the flux response in the
traversal time �L,

FIG. 3. Aharonov-Bohm loop capacitively coupled to external
charged gates. The system as a whole �inside the dashed line; this
includes the full cavity which we drew only partially� is electrically
neutral, which does not prevent charge fluctuations in the arms of
the loop to occur, provided they are compensated by fluctuations in
the gates. The fluctuations in QL and QR induce fluctuations of the
internal electric potential in the corresponding arm.
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�g2���	 =
NBNT

�NB + NT�2cos2�2��/�0�e−�L
2/���c, �23�

with the same dephasing time as above. This Gaussian damp-
ing has not been obtained previously. Indeed, previous works
always assumed �-correlated phases, ��s�t1��s�t2�	s���t1

− t2�, meaning �c /�L→0.
To close this section, we remark that the same dephasing

behavior will occur in regular systems as long as the phase
correlator decays fast enough. While in that case, an expo-
nential decay is not at all obvious from a dynamical point of
view, we stress that, in the limit of long traversal times �L
��c, the minimal requirement for an exponential damping as
in Eq. �21� is a power law decay of the phase correlator
���t1���t2�	= ���0���0�	��c / ��c+ �t1− t2���� with �	1.

V. CONCLUSION

We have presented a semiclassical calculation of the flux
dependence of the probability current and the conductance in
two distinct Aharonov-Bohm setups �see Fig. 2�. We have
shown how the interference fringes in the probability current
disappear in chaotic systems in the case of cavities with large
dwell times, whereas they may persist in the case of a regular
cavity. This is in agreement with and sheds light on the nu-
merical results of Ref. �8�. Simultaneously, we showed how
the situation is completely different in the transport setup,
where the flux response of the conductance becomes univer-
sal in the chaotic case. This universality is lost in the case of
integrable cavities, where we conjectured that the flux re-
sponse may be of the same order as the conductance itself.

In the transport setup, we argued that dephasing from ex-
ternal degrees of freedom is necessary to wash out the flux-
periodic interference fringes in the conductance. We intro-
duced dephasing in a similar way as in Refs. �16,23� and
found that flux-dependent interference fringes in the conduc-
tance vanish exponentially, exp�−�L /���. Both this exponen-
tial damping and the linear temperature dependence of the

dephasing time �22� are in agreement with transport experi-
ments on ballistic Aharonov-Bohm systems �24�. Our results
confirm the standard view that external sources of decoher-
ence are generally required to induce a complete quantum-
classical correspondence.

Our semiclassical treatment extends the results of Refs.
�16,23� to the many-channel case. Still, the dephasing behav-
ior of Eqs. �20� and �21� relies on the one-potential approxi-
mation giving the linear temperature dependence of the
phase correlator, Eq. �22�. Because Ref. �8� considered the
other limit of subwavelength slits, it is likely that diffraction
effects play a role there that was neglected here. However,
we do not expect diffraction to alter the situation qualita-
tively.

One of our motivations was to reconcile the results of
Ref. �8� with well-known mesoscopic physics theoretical and
experimental results. That is why we deliberately made the
hypothesis of forward scattering only, that particles entering
one of the intermediate leads �indicated by L and R in Fig. 2�
are transferred to the outgoing lead with probability one.
This is justified in the case where the latter lead is somehow
wider than the two intermediate leads together, NT�NR
+NL. It would be interesting to lift that hypothesis, and con-
sider the emergence of higher flux harmonics and of flux-
dependent weak localization corrections to the average con-
ductance, and the influence that dephasing has on them. We
expect that the presence of weak-localization corrections
would result in the usual Lorentzian damping of the ampli-
tude of Aharonov-Bohm interference fringes in the disorder-
averaged conductance �as opposed to the typical conductance
calculated here�. Further investigations are however neces-
sary to confirm this.
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